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Abstract—The first synthesis of 5-isopropenyl-3-methyl-cyclohex-2-enone, (isocarvone) (2), in enantiomerically pure form is re-
ported. Both enantiomers of 2 can be produced by manipulation of carboxylic acid 5, which is available from R-(—)-carvone (1).
These materials provide new chiral building blocks that could be used in total synthesis of natural products and related optically
active compounds.

© 2004 Elsevier Ltd. All rights reserved.

Carvone (1), commercially available in both enantio-

meric forms, is one of the most common natural mono-
terpenes, used in the food and perfume industries, and
as chiral starting material in the synthesis of natural (

products. A scan of the past years’ chemical literature
reveals over 4000 hits for the keyword ‘carvone’, many
of which exemplify and validate its use in synthesis as a
chiral building block. Despite the plethora of chemical

o} 0
transformations based on 1, the chemistry of its methyl
positional isomer, referred to herein as isocarvone (2:
5-isopropenyl-3-methyl-cyclohex-2-enone), remains vir- (

tually unknown (Fig. 1). In fact, only one racemic syn-

(-)-1: R-(-)-carvone (+)-1: S-(+)-carvone

thesis of isocarvone (2) has been described by Stetter (9)-2: ()-isocarvone  (#)-2: (+)-isocarvone
and Simons in 1985 using an aldol condensation as key
step,z and there are no reported syntheses of 2 in Figure 1. Chemical structures of carvone (1) and isocarvone (2).

enantiomerically pure form. Herein, we describe an
efficient synthesis of both (—)-2 and (+)-2 using as a
common starting material the readily available R-(—)-
carvone.

The retrosynthetic analysis toward (—)- and (+)-iso-
carvone is highlighted in Figure 2. We anticipated that (2 =) MeO” ﬁ
intramolecular olefination of ketophosphonate 3 would ,(
produce (—)-2, while methylation of ketone 4,° followed o]

by an oxidative carbonyl transposition would form (+)- 3 HO — (1
2. Both 3 and 4 could be available from acid 5, which is OHC

‘ . +2 — ﬁj IJ
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Scheme 1. Synthesis of (—)-isocarvone (—)-2. Reagents and conditions:
(a) H,O,, NaOH, 0°C, 3h, 98%; (b) H,SO4, THF-H,O, reflux, 3h,
50%; (c) NalO; (2.0equiv), MeOH-H,0, 0°C, 3h, 75%; (d)
(MeO)NHMe-HCI (1.2equiv), Et;N (1.2equiv), EDC-HCI (1equiv),
—30to 25°C, 16 h, 75%; (e) MeMgCl (1.3 equiv), THF, —50 to —10°C,
2.5h, 90%; (f) TBSCI (1.5equiv), Et;N (2equiv), DMAP (0.2 equiv),
CH,Cl,, 0-25°C, 16h, 75%; (g) (MeO),P(O)CH; (3.0 equiv), n-BuLi
(3.0equiv), THF, —78 to 25°C, 16h, 90%; (h) KF/Jones (2.0 equiv),
acetone, 0-25°C, 5h; (i) LiCl (1.0equiv), DBU (1.0equiv), THF, —78
to 25°C, 16h, 65% (two steps).

known to derive from manipulation of R-(—)-carvone as
reported by the Deslongchamp and co-workers.*

The synthesis of (—)-isocarvone began with epoxidation
of (—)-1, in the presence of basic hydrogen peroxide, to
produce epoxide 6 in 98% yield (Scheme 1).*° Com-
pound 6 was treated with aqueous H,SO, in THF to
produce a 1:1 mixture of cis and trans diols that were
separated by column chromatography. The cis diol was
subjected to oxidative cleavage with NalOy4 to produce
the known carboxylic acid 5° in 38% combined yield
(from (—)-1). Coupling of 5 with MeONHMe-HCI
proceeded in best yields using EDC-HCI and Et;N and
afforded Weinreb amide 7 (75% yield). Alkylation of 7
with MeMgCl in THF proceeded selectively at low
temperature (—50 to —10°C) and generated the
secondary alcohol 8a,” which was converted to the
corresponding silyl ether 8b in 68% combined
yield. Treatment of 8b with the anion of di-
methoxymethylphosphonate at —78°C formed keto-
phosphonate 9 in 90% yield.

Deprotection of silyl ether 9 was found to be unex-
pectedly difficult. Several reagents were tried (TBAF-
THF, TBAF on alumina, PTSA, CSA, HCI) but led in
most cases to decomposition. After much experimenta-
tion, a one-pot procedure using KF and Jones’ reagent
as oxidant® gave the required methyl ketone 3. Without
purification, compound 3,° was subjected to an inter-
molecular Horner—-Wadsworth-Emmons olefination
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Scheme 2. Synthesis of isocarvone (+)-2. Reagents and conditions: (a)
PTSA (0.1 equiv), CH(OMe); (5.0 equiv), MeOH, reflux, 2 h, 90%; (b)
3N NaOH (3.0equiv), MeOH-THF (1:2), 5h, 25°C, 90%; (c) MeLi
(2.5equiv), TMSCI (1.0equiv), THF, 0-25°C, 1h; (d) 0.5M HCI,
30min, THF, 25°C; 70% (two steps); (¢) PTSA (0.1 equiv), PhCH;,
reflux, 1h, 70%; (f) MeLi (1.5equiv), Et,O, 2h, 0°C; (g) PCC
(2.0equiv), MS 4A, CH,Cl,, 25°C, 3h, 62% (two steps).

under Masamune-Roush conditions (LiCl, DBU)! to
afford the desired isocarvone (—)-2'! in 65% combined
yield (Scheme 1).

The synthesis of (+)-2 isocarvone is highlighted in
Scheme 2. Acid 5 was treated with (MeO);CH in MeOH
under acid catalysis to produce, after hydrolysis of the
resulting methylester, ketal 10 in 81% combined yield.
Alkylation of acid 10 using MeLi/TMSCI followed by
deprotection of the carbonyl group afforded ketoalde-
hyde 11 (70% yield), which was subjected to an acid-
catalyzed intramolecular aldol condensation reaction to
form enone 4 (70% yield). Treatment of 4 with MeLi
produced the corresponding tertiary alcohol, which
underwent a PCC induced oxidative rearrangement to
form (+)-2 isocarvone'! in 62% combined yield.

In conclusion, we present herein an efficient approach
for the synthesis of both enantiomers of 5-isopropenyl-
3-methyl-cyclohex-2-enone, (isocarvone) (2). Both syn-
thetic sequences depart from carboxylic acid 5, which is
readily available from R-(—)-carvone. This approach
represents the first entry into both enantiomers of iso-
carvone and opens the way for their application as chiral
building blocks in organic synthesis.'?
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